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I. INTRODUCTION

The discovery of surface enhanced Raman spectroscopy1 has
inspired a large body of work which has been summarized in
several recent review a.::"c.'tcltes.z-e While much has been learned
about various enhancement sources there is still disagreement
regarding the proportion in which different factors contribute to
the observed Raman cross section. Even though it is difficult to
include all the opinions in a broad classification, it is fair to
say that the main debate is centered around the relative
ihportance of "chemical" versus "electromagnetic" (EM)
enhancement factors.

The two kinds of effects can be defined semi-quantitatively
by examining various terms appearing in the expression for the
intensity of Raman scattering by a molecule located near a solid
surface.9 A source of light of freguency w producing an electric
field Eo(?,w) in vacuum, will generate a different field El(?;w)
-'ﬁ(? W) . E (‘w), if a solid surface 1s present. When a molecule
is placed at T it will interact with E and acquire a Raman
dipole4 'S given by

-
dx

> -
"H=Q35 R(T:0) E (Tiv) (I.1)

—

©
Here Q is the amplitude of the normal mode of interest and « is
the polarizability tensor of the molecule. The electric field z
of the radiation emitted by this dipole can be written as

E('z'-';w-wv) = a0 = Qé- ;o) E_(F:0) (I.2)

where r' is the position of the detector and ‘c-;. is the
electromagnetic Green's function4_5 for a dipole oscillating near
a surface. The Raman intensity, I, corresponding to Eq. (2) is
proportional to IE(?';w-wv)l'z

Equation (2) permits a simple classification of the total
enhancement into terms involving different mechanisms: the

enhancement of G and R is usually electromagnetic, while that of




3&./3Q is "chemical”. Large enhancements of ‘é’and ? can be
achieved10 by using surface shapes and materials which permit the
incident light and the emitting dipole to excite the
electromagnetic resonances (e.g. plasmons) of the solid.

Moderate off-resonance enhancements of G and ‘ﬁ' can also be

obtained by using high surface curvaturesloc, or the mutual

polarization of two solids located next to each other.loe Many
examples of this kind of enhancement are described in refs.
2,4,6-8 and especially in ref. 5. An additional electromagnetic
effect is caused by the coupling of the emitting dipole to its
image field, which shortens the lifetime of the emitting
states'11 and depresses the intensity of the resonant Raman
signal.

The magnitude of the electromagnetic effects is estimated
by solving the "phenomenological” Maxwell equations under a
number of assumptions. Unfortunately these assumptions are

inaccuratela'14

and their use leads to errors whose magnitude
cannot be adequately estimated, This, together with the fact
that in working with rough surfaces it is extremely difficult to
control surface structure (which strongly influences the EM
effects), makes it difficult to assess 'how much of the observed
enhancement is due to electromagnetic effects and how much to

chemical ones. Nevertheless a broad survey5 of various

spectroscopic probes on a great variety of surfaces shows that
the electromagnetic theory is in qualitative agreement with many

~
.
-
~
(9]
-
'S

'
~

Vo
-

i

experimental observations. Furthermore, some of the most careful

studies in the SERS literature, carried out by Murray and
Bodoffls, Mullins and Campion16 seem to indicate that the
chemical effects are small.

|

However not all molecules are alike, and a large number of
studies have pointed out behavior at variance with the

.j A.}‘-’A'.." ._’v._'... ."-.. p

gqualitative predictions of the EM theory17. The extent to which

L3 '.
N

these studies are conclusive is still debated, and a large r amber
17-28

o e-
S e

of theoretical models have been used to suggest possible

“a

sources of chemical enhancement, and to estimate its magnitude.
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The majority of these proposals are summarized by Fig. 1
which schematically represents the Raman process for an adsorbed
diatomic molecule. The incident photon of frequency w excites an
electron from the ground state |0> into the state |i>; this
electron moves through the solid, excites the "local phonon"
(e.g. the diatomic's vibrational stretching mode) and is
scattered into the state |j>; subsequently the electron decays
into the ground state and emits a Raman photon. The total
emission is obtained by adding up all such processes occurring at
all the points A, B and C in the system, for all the electrons
that can participate without violating the ccnservation laws or
the Pauli principle.

To say that an accurate calculation of this process is
29,30 Thus, the
existing models, including the one to be presented here, have had

extremely difficult is an understatement.

to resort to severe approximations. This makes them conceptually
useful, but limits their predictive power and reliability.

The diagram in Fig. 1 allows us to classify these models
into two groups. One group relies on the fact that the electron
lines (i.e., the one-electron Green's functions) have energy
denominators which lead to resonant Raman signals when the
incident laser or the emitted light match an electronic
transition in the molecule-solid system. Since the excited
electron must interact with the local phonon a2 substantial
enhancement of the Raman signal can come only from transitions
involving electrons (hence orbitals) which are located near the
molecule. Because of this constraint the models involve either a
new charge transfer (CT) state created by chemisorption,lg’zo or
the excitation of "metal electrons” into empty "molecular"
orbitals.21'23’27

carefully controlled EELS experiments of Avouris and Demuth37

The detection of a CT state in the very

gives plausibility to the idea that a resonant enhancement of the
signal can play a role in SERS. Unfortunately, no detailed Raman
measurement has been made on that system at a frequency that

would excite the CT state. It is conceivable that a small
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transition dipole derivative and/or the broadening of the state

12 may substantially depress the

by energy transfer to the surface
resonant Raman signal and result in a small enhancement.

The other chemical enhancement mechanism invokes the fact
that the polarizability of the metal-molecule system might be
much larger than that of the molecule alone, since (qualitatively
speaking) some of the metal's electrons which can scatter from
the local mode have much higher polarizability than the electrons
bound to the molecule. This idea is at the basis of Otto's

13,17 for the role of atoms in SERS. A version of it,

proposal
the modulated reflectance model, was discussed by Maniv and
Metiu.18

In the present paper we examine theoretically the idea that
metal atoms on a solid surface might'increase the Raman
polarizability of the molecules adsorbed on them. To estimate
the order of magnitude of this increase we use ab-initio Hartree-
Fock calculations for a CO molecule adsorbed on Cu. This method
permits us to do a better job in computing the_ detailed local
binding properties than the Newns - Anderson Hamiltonian or the
jellium RPA calculations that have been used in prior work.
Unfortunately, the large number of electrons severely limits our
ability to deal with the effects of the extended solid. The
followiha strategy was, therefore, employed. Noting that atomic
hydrogen l1ike Cu contains‘a single S electron outside of a core
we calculated the properties (primarily bonding, but also the
core-hole states of HnCuCO clusters and compared them with the
results of Cu500 ab-initio Hartree-Fock calculationsal, as well
as with the experimental results for CO adsorbed on Cu surfaces.
It turns out that the linear H-Cu-CO complex reproduces the
properties mentioned above reasonably well. Therefore one hopes
that the polarizability derivative of the complex with respect to
the C-0 stretch will also agree reasonably well with experiments
for CO bonded to a Cu atom adsorbed on a Cu surface (i.e. the
adatom model). We do not expect, of course, to obtain the

correct electromagnetic properties of the surface bu. this is not
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a handicap since we are only interested in the local modification
of the polarizability derivative caused by the chemical bonding.

Thus, this calculation is especially relevant to Otto's atom

3,17

model.
The main result is that aazz/aaco

axis and Rco is the C-0 bond distance, is increased by the

binding of CO to Cu by a factor of ~2. This gives a Raman

intensity enhancement of ~4. Careful experiments16 give for this

where z is along the CuCO

ot Ja e

quantity an order of magnitude of ~6, or of less than 10. The
experiments were not carried on the CO/Cu system and we mention

-
al,

them here only to indicate that we are in general agreement with

allll

the order of magnitude obtained from data taken and analyzed with

.o .

TR

great care.
It should be observed that without adding hydrogen the CuCO
complex, by itself, gives results which are qualitatively

different from those of CO chemisorbed in an on-top site. The
} hydrogren atom attracts electrons from the Cu core and this
. allows the Cu atom to bind more strongly to CO as it does in the
real system. By carefully choosing the cluster it may be
possible to accomplish a similar simplification for studying
- chemisorption properties of other molecules and/or other sites on
a Cu surface.
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% II. CLUSTER MODEL

Qf As noted in the Introduction Bagus and See131(BS) have
previously used a cluster model to calculate the adsorption

;CD properties of CO on Cu(100). They considered the case of on-top
binding, which is appropriate for CO in a C(2x2) overlayer
32,33 and placed the Cu atom which binds to CO at the
square pyramid. The four Cu atoms in the base of

Q%J structure,
AN apex of a Cu5
the pyramid represent the nearest neighbors in the second layer
of the (100) copper surface.

Since the electronic configuration for atomic Cu consists
of a single s electron outside of closed shells we thought it
3 might be possible to simplify the BS model without significant

loss of accuracy by substituting hydrogens for the nearest

T
2
1, -ty

neighbor Cu atoms. However, trial calculations on CuH4 showed

Y X% RN
P AR
(4

that there was excessive charge transfer (~0.56e) from the
hydrogens to the central Cu. Further examination revealed (see
Sec. III) that this charge transfer occurred, in large part, into

?

the 4p Cu orbitals of w character which suggested replacing the

t ¥
B

»_ .
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four atom square by a single H atom on the symmetry axis.
Indeed, upon doing so, the charge transfer was reduced to ~0.06e,

a reasonable value for a neutral or quasi-neutral metal
34 -

«
3

P

surface.
O0f course, the small total charge transfer is just one
criterion that the simplified HCuCO cluster model should satisfy.
It also ought to reproduce other properties of CO binding to Cu,
particularly the Cu-C equilbrium bond length and the Cu-C bond

energy. As we will see in Sec. III HCuCO does gquite well for
32,35

P
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both of these properties. In fact, compared to experiment
it gives a better binding energy than the BS model which
underestimates it.
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For calculations of the C-0 bond polarizability derivative

.
1 S B
PPN

it is important that the valence molecular orbitals primarily

ﬂﬁll

s

localized on CO be accurately described. Again, we will see in

s
‘.:ﬂ‘_'x Y

the next section that the orbitals obtained from ocur model are in

:I
iy

Ry
2z

close agreement with the corresponding Cu500 orbitals.
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III. COMPUTATIONS
All of the electronic structure calculations reported in

this paper were carried out by the ab initio Hartree-Fock self
consisent field method using the HONDOS program.36 For open
shell systems the orbitals were unrestricted, for closed shell
systems they were taken to be doubly-occupied.

A suitable CGTO minimum basis set for describing the 34
transition series has been developed by Tatewaki and
Huzinaga.37 They used a contraction of three Gaussians to
represent the s and p orbitals but found that a fourth GTO was
required to give an accurate atomic 34 orbital energy. This
contracted minimum basis will be referred to as SET A. It turns
out, however, that one cannot achieve sufficient binding of Cu to
CO unless a 4p polarization function is added to the basis. To
this end we adapted the 4p orbital obtained by Wachters38 for the
3d1°4p configuration of atomic Cu. Instead of eleven Gaussian
functions only the three with largest coefficients were retained
and these were then contracted and scaled leading to basis set B.
Ih order to test the convergence of our calculations still a
third set (SET C) was constructed by making a 1/1/1 split of the

- 4s orbital and a 3/1 split of the 34d.

Three different contracted Gaussian bases were chosen for

the CO moiety as well. The first (SET 1) was the minimum 3G set
39 the second (SET 2) was

double zeta [4s2p] contraction, and the third a

of Tavouktsoglou and Huzinaga
Dunning's4°
[584p] set (SZT 3) which resulted from splitting of Dunning's
orbitals.41

Cu and CO basis functions which may be uniquely designated Al,

There are, all together, 9 possible combinations of

1Y WV ML A

X O
L)

.» C3. Finally, for the hydrogen atom we employed the standard
Hehre, Stewart and Pop1e42 STO~3G basis function.
In order to investigate the CO basis we have determined a

S,

Ty ey,

number of properties for the free CO molecule most of which are

[

shown in Tables I and II. From the tables it is apparent that,
although SET 1 is inadequate, SETS 2 and 3 reproduce with good
accuracy the results of experiment and/or better calculations as

[
R

L
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far as the equilibrium bond length, axial polarizability «,,

Mulliken gross populations are concerned.

The error in the dipole moment of CO compared to experiment
is a well—known43 consequence of the Hartree-Fock approximation.
Evidently, the consequences are not as serious for the
polarizability'nor, we assume, the polarizability derivative.

The polarizability was obtained by finite perturbation theory44
using a gquadratic fit to the energies found for an applied field
equal to -0.01, 0.00, +0.01 a.u. As a check the dipole moment
determined by fitting agreed with the directly computed value (at
F=0) to within %.002 a.u.

By comparing basis sets 2 and 3 in Table I we get an
indication that our calculations may be reasonably well converged
with respect to basis set size. However, it is hazardous to draw
conclusions in this regard as one can see from the polarizability
resuts of McLean and Yoshimine45 and Huo46 gquoted in the table.

Our initial test of the Cu basis was carried out on the
Cul-l4 cluster. We noticed immediately that there was considerable
charge transfer from the hydrogens to Cu. As an example, the

Mulliken gross populations for set B are presented in Table III.
Clearly, the negative charge on Cu (0.56e) is much too large for
a neutral or quasi-neutral Cu surface. compared to the dlosl
free atom it is evident that the additional electronic charge has
gone into the 4p orbitals. The m-like 4p's (4px,4py) alone can
account for almost the entire deviation from neutrality. Thus,
as noted earlier, we were persuaded to substitute a single H atom
on the symmetry axis for the H4 group. Upon doing so the 4px and
4py populations fell essentially to zero which was expected and
the charge on Cu was reduced to 0.06 as desired. It should be
observed that the H of CuH is considerably less positive than the
H's of CuH4 showing that the effect is not simply due to hawving
only 1/4 as many H atoms.

One might wonder whether the last remaining H atom can be

eliminated as well. In fact it must be retained for otherwise CO

does not bind to CH, at least in calculations with the basis sets
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used here. In order to see whether the HCuCO model adequately
remedies this deficiency we did preliminary computations
employing the Al and Bl bases. Only the Cu-C distance was
varied, the C-0 and Cu-H bond lengths were fixed at the

48 for the free molecules.

equilibrium minimum basis set value
The binding parameters that were found are compared in Table IV
with those of BS and experiment. Without 4p orbitals in the Cu
basis (SET Al) the binding is too weak. Once such rolarization
functions are included (SET Bl) the results are quite
satisfactory although the excellent agreement with experiment may
be partly fortuitous. A Mulliken gross population analysis of
the three highest valence orbitals derived from free CO (Cf.
Table V) - carried out for SET B2 - further demonstrates the
similarity between the BS model and ours as far as the CuCoO

entity is concerned.

..................



‘u', 10

L .

}p

‘%: Iv. RESULTS AND DISCUSSION

i; Our final results for the HCuCO cluster model of CO
Q: adsorbed on Cu(100) are reported in Tables VI and VII. The
.

former table pertains particularly to the properties of the Cu-C
bond, the latter to the C-0 bond. In both cases the B2 and C2
basis sets were employed along with a Cu-H bond length fixed at
. 2.709 a.u. The latter distance is the equilibrium value for the
free molecule in the minimum basis. This is close tc the

;ﬂ experimental result49 of 2.765 a.u. and we would not expect it to

'é change much with enlarging the basis set or forming the HCuCO

;5 cluster. We also tested this calculation to insure that the

¢ polarizability derivative we seek, sazz/SRC_o, is insensitive to

1% small variations in Rou-g'

‘:j In Compiling Table VI the C-0 bond length was held constant

:% at the free molecule value determined by the SET 2 basis. Note
that the binding properties, which are similar in value to our

- preliminary results (Cf. Table IV) remain in good agreement with

E} experiment. The Cu-C bond polarizability derivative is guite

Ei small as may be seen by comparing the derivative for the C-0
bond. We used the Cu-C equilibrium bond distances computed for

‘ﬂ this table as input to obtain the C-0 bond properties given in

_ Table VII. |

“i <, is a nearly linear function of R, _. and Ro_g in the

.| vicinity of the equilibrium bond lengths. Hence, the specific

ii values chosen for these parameters is not important. If RC~O is

> increased from 2.136 to 2.256 a.u., for example, the (SET C2)

i polarizability derivative in Table VII changes from 16.51 to

‘ 16.80 a.u.

2: The differences between basis sets B2 and C2 again provide

.f some indication of how well-converged the results are. 1In

i? general, these differences are relatively small. Although the

i latter statement is not true for the polarizability derivative

fi 8x,,/8R.. _o: in that case the change is small on an absolute

*; basis. |

Pl ~As we have already emphasized in the Introduction, our
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intention was to estimate to what extent the non-resconant Raman

signal for the C-0 stretch is increased when CO binds to a Cu
surface. An HCUCO cluster has been used to simulate the on-top
binding of CO on Cu{100). The fact that our cluster reproduces
the binding properties of adsorbed CO and the CO valence orbitals
of pyramidal Cugco gives us hope.that a correct estimate of the
Raman intensity has been obtained. This is especially likely
since the property sought is a local quantity. Our result is
that the ‘Ehemical“;enhancement is about a factor of four which
is in general agreement with the few careful estimates based on

18716

experimental data. We emphasize that the present

calculation does not deal with the question of resonant

enhancemenﬁ)ig
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Table II. Mulliken gross populations for the three highest
valence molecular orbitals of free CO as a function
of basis set.

CARBON OXYGEN
SET1 SET?2 BS SET1 SET?2 BS

s 0.32 0.21 0.21 0.22 0.26 0.24 )
40

p 0.00 0.02 0.03 0.46 0.52 0.53

s 0.39 0.54 0.57 0.01 0.00 -0.01
5¢ ’

p 0.38 0.37 0.33 0.23 0.10 0.10
im P 0.26 0.23 0.23 0.74 0.77. 0.177
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Table III.

Cu

xX m = oom

TOTAL

-

- T L aadh Mt a8 e B i bt S h o d ande Sl a2 R v B £ By - S

with the SET B basis.

CuH4 CuH
S 6.84 6.94
Pa 4.63 4.21
pTr 8.53 8.00
dCr 1.56 1.91
dTr 4.00 4.00
d6 4.00 4.00
29.56 29.06
s 0.886 0.94
s 0.886
s 0.86
s 0.86

''''''' P A T AT T T -.'.\" Y oay
T i T

T

Cu

29.00

TR TR NS TN T TN TR T o ."'w-vvr11

Mulliken gross populations in CuH4 and CuH obtained
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FIGURE CAPTIONS

’s
g Fig. 1. Schematic diagram for Raman scattering by a diatomic
:3 adsorbed on a metal surface. The shape of the
'f electron cloud is drawn approximately. Lined
j circles represent ion cores; wavy lines photon
.Q propagators; full lines are electron propagators,
‘3 and the double line is a phonon (i.e., the

stretching mode of the adsorbed diatomic molecule
éz propagator). The energies for each propagator are
‘: noted along the lines. A more detailed description
ﬁ of the process is given in the text.
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